BIODEGRADABLE POLYMER DARI ASAM LAKTAT

I. Noezar, V.S. Praptowidodo, R. Nugraheni, M.H. Nasution
Program Studi Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Bandung
Gedung Labtek X – Jalan Ganesha 10 Bandung 40132
inoezar@che.itb.ac.id

Abstrak

Kata kunci : Poly(lactic acid), polimer, biodegradable

Abstract
The objective of this research is to learn and to make the biodegradable polymer, Poly(lactic acid), from lactic acid by condensation polymerization without catalyst. Poly(lactic acid) that will be produced in this research should have the molecular weight between 3000-5000 grams/mole. The scopes of this research are the purification of lactic acid, purity analysis, polymerization reaction, and polymer’s characteristic analysis. The method of lactic acid purification is distillation in nitrogen atmosphere. Polymerization reaction which is used in this research is the condensation polymerization without catalyst. The polymer’s characteristics that will be analyzed are molecular weight and degradation time Molecular weight is analyzed by viscosimetry method and Gel Permeation Chromatography. Degradation time is analyzed by landfill method. Based on this research, purification of D,L-lactic acid (91%-weight) reaches 98%-weight and for L-lactic acid (93%-weight) reaches 96%-berat. Molecular weight of D,L-lactic acid between 450–3600 grams/mole and L-lactic acid between 4200 – 8500 grams/mole. The degradation time of polymer is 5 weeks.

Keywords: Poly(lactic acid), polymer, biodegradable
1. Pendahuluan

Polimer yang dibuat dan dikembangkan saat ini sebagian besar berasal dari bahan-bahan petrokimia. Polimer ini membutuhkan waktu yang sangat lama untuk terdegradasi secara alami di alam sehingga jika dibuang di alam akan menimbulkan akumulasi sampah polimer. Untuk mengatasi hal tersebut, umumnya pengolahan limbah polimer berbasis dasar minyak bumi dilakukan dengan cara dibakar di incinerator. Tetapi cara ini menimbulkan polusi udara berupa gas CO dan CO₂ yang dapat berdampak pada timbulnya pemanasan global (global warming).

2. Fundamental
Degradasi adalah proses pemutuskan rantai polimer menjadi rantai yang lebih pendek. Secara garis besar, proses degradasi dapat terbagi menjadi chemical degradation, thermal degradation, dan biodegradation. Chemical degradation adalah proses degradasi karena pengaruh zat-zat kimia seperti asam, basa, pelarut, dan sebagainya. Sementara thermal degradation adalah proses degradasi yang terjadi akibat pengaruh panas, sedangkan biodegradation merupakan degradasi yang terjadi akibat adanya faktor biologis, seperti bakteri dan enzim.

Biodegradable polymer adalah polimer yang mampu mengalami proses degradasi berupa pemutuskan rantai polimer atau ikatan antar monomer pada rantai utama polimer menjadi rantai yang lebih pendek secara biologis oleh makhluk hidup seperti jamur, bakteri, dan enzim yang dihasilkan oleh mikroorganisme.

Menurut Kaplan (1993) biodegradasi polimer merupakan suatu proses degradasi yang dilakukan oleh mikroba melalui aktivitas enzim. Terdapat dua langkah yang terjadi dalam proses biodegradasi, yaitu depolimerisasi (pemutuskan rantai) dan mineralisasi yang ditandai oleh timbulnya air, biomass, gas CO₂, CH₄, N₂.

Proses terjadinya biodegradasi dapat dilihat pada gambar berikut:

Gambar 2.1 Kerangka Biodegradasi Polimer

Berdasarkan Gambar 2.1 langkah pertama biodegradasi polimer terjadi di luar tubuh sel atau organisme yang dilakukan oleh bakteri atau jamur. Proses ini terjadi
dalam bentuk endo (pemutusan secara acak pada rantai utama polimer) atau ekso (pemutusan yang diawali oleh bagian ujung rantai). Oligomer yang dihasilkan akan masuk ke dalam sel dan mengalami proses mineralisasi membentuk biomass, garam, air, gas CO₂, CH₄, dan N₂.

Lactic acid atau asam laktat merupakan senyawa kimia dengan rumus molekul CH₃CHOHCO₂H. Asam ini merupakan asam organik dalam bentuk fasa cair dan tidak berwarna. Asam laktat ini larut dengan air atau etanol. Asam laktat adalah produk fermentasi dari laktosa (gula susu) yang ada dalam susu asam, yoghurt, dan keju.

Berikut ini adalah data-data sifat fisik asam laktat:

<table>
<thead>
<tr>
<th>Sifat</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berat molekul (gram/mol)</td>
<td>90.08</td>
</tr>
<tr>
<td>Gravitasi spesifik</td>
<td>1.2</td>
</tr>
<tr>
<td>Titik didih (°C)</td>
<td>190</td>
</tr>
<tr>
<td>Titik leleh (°C)</td>
<td>17</td>
</tr>
<tr>
<td>Titik nyala (°C)</td>
<td>112</td>
</tr>
</tbody>
</table>

Secara kimia, asam laktat memiliki dua isomer optik yaitu bentuk dextrorotatory dan levorotatory sebagai berikut:

![Gambar 2.2 Struktur isomer optik asam laktat (a) dextrorotatory; (b) levorotatory](image)

Reaksi polimerisasi asam laktat (lactic acid) menjadi Poly(lactic acid) merupakan reaksi polimerisasi kondensasi. Secara sederhana reaksi ini dapat digambarkan sebagai berikut:

![Gambar 2.3 Skema reaksi polimerisasi kondensasi asam laktat](image)

Untuk memperoleh polimer dari asam laktat dengan berat molekul yang tinggi, asam laktat harus dimurnikan terlebih dahulu. Reaksi polimerisasi asam laktat merupakan reaksi polimerisasi kondensasi dan bersifat reversibel. Air yang dihasilkan selama proses reaksi harus dikeluarkan karena akan mengganggu kesetimbangan reaksi ke arah reaktan.

Reaksi polimerisasi asam laktat akan menghasilkan polimer ataktik, isotaktik dan sindiotaktik, tergantung pada monomernya. Jika monomer yang digunakan adalah DL-lactic acid maka polimer yang dihasilkan adalah Poly(lactic acid) ataktik dan sindiotaktik.

![Gambar 2.4 Poly(lactic acid) Ataktik](image)

![Gambar 2.5 Poly(lactic acid) Sindiotaktik](image)

Jika monomer yang digunakan adalah L-lactic acid maka polimer yang dihasilkan berupa poly(lactic acid) isotaktik.

![Gambar 2.6 Poly(lactic acid) Isotaktik](image)

Parameter kelarutan didefinisikan sebagai berikut:

\[\delta = (CED)^{\phi} - \frac{DE_{m}^{0}}{v} \delta \]

Keterangan:
CED = cohesive energy density, merupakan suatu ukuran kekuatan gaya intermolekul yang menahan molekul bersama-sama di dalam larutan
DEₘ₀ = perubahan energi molar pada penguapan
v = volum molar cairan, cm³/g.mol

Parameter kelarutan ini berguna untuk memperkirakan pelarut yang sesuai bagi polimer. Pelarut yang baik memiliki
nilai parameter kelarutan yang dekat dengan polimer serta gaya sekunder yang kuat antara segmen polimer dan molekul pelarut.

3. Metodologi

Asam laktat yang digunakan asam laktat yaitu DL-lactic acid dengan konsentrasi 91%, dan L-lactic acid dengan konsentrasi 93%. Pemurnian asam laktat dilakukan dengan distilasi pada atmosfer nitrogen dan tekanan 1 atmosfer. Distilasi dilakukan dengan dua variasi yaitu secara bertahap dan tidak bertahap.

Pada distilasi secara bertahap, asam laktat dipanaskan dengan laju pemanasan tetap yaitu 1°C/menit hingga mencapai temperatur 110°C. Kemudian keadaan tersebut dijaga tetap selama 2 – 3 jam sehingga air yang terdapat di dalam asam laktat dapat diuapkan.

Pada penguapan air secara tidak bertahap, asam laktat hanya dipanaskan dengan laju pemanasan tetap tetapi tidak dijaga pada temperatur tertentu. Penguapan air dihentikan ketika tidak ada lagi air yang menguap dan terkondensasi.

Konsentrasi asam laktat diuji dengan titrasi asam lemah dengan basa kuat yaitu KOH. Indikator yang digunakan adalah fenolfitelein.

Polimerisasi asam laktat dilakukan segera setelah pemurnian asam laktat selesai dilakukan. Polimerisasi asam laktat dilakukan pada atmosfer nitrogen dan tekanan 1 atmosfer. Polimerisasi ini dilakukan secara bertahap dan tidak bertahap. Pada polimerisasi bertahap, asam laktat dipanaskan dengan laju pemanasan tetap yaitu 1°C/menit hingga mencapai temperatur 220°C dan dijaga pada temperatur tersebut selama waktu polimerisasi. Pada polimerisasi tidak bertahap, asam laktat dipanaskan dengan laju pemanasan tidak tetap hingga mencapai temperatur 220°C dan dijaga pada temperatur tersebut selama waktu polimerisasi.

Variasi polimerisasi lainnya ialah polimerisasi dan tanpa pengadukan mekanik dan dengan pengadukan mekanik. Berikut ini adalah gambar peralatan polimerisasi:

Gambar 3.1 Rangkaian Peralatan Polimerisasi Tanpa Pengaduk Mekanik

Keterangan:
1. heating mantle: 7 kapiler nitrogen
2. labu bundar 500 mL: 8 termometer
3. kolom vigreux: 9 pipet sampling
4. kondensor: 10 regulator nitrogen
5. labu erlenmeyer 300 mL: 11 stop kontak
6. tabung nitrogen: 12 penyangga

Karakterisasi polimer yang dilakukan ialah analisis berat molekul dan uji biodegradasi polimer. Analisis berat molekul dilakukan dengan metode Viskosimetri dan Gel Permeation Chromatography (GPC). Analisis berat molekul secara viskosimetri mengikuti persamaan Mark-Houwink Sakura sebagai berikut:

\[[\eta] = K \cdot M_c^a \] \((2) \)

Keterangan:
\[[\eta] \]: viskositas intrinsik Poly(lactic acid)
\[K \]: konstanta sebesar 7.4 x 10^{-3} \[12\]
\[M_c \]: berat molekul rata-rata viskositas Poly(lactic acid)
\[a \]: konstanta sebesar 0.87 \[12\]

Uji biodegradasi polimer dilakukan dengan membuat polimer dalam bentuk lembaran. Lembaran ini kemudian ditamam dalam tanah, diletakkan di alam terbuka. Setiap satu minggu, perubahan polimer diamati.

4. Hasil dan Pembahasan

Kondisi operasi tiap run percobaan ditampilkan pada Tabel 4.1. Selama proses distilasi, konsentrasi asam laktat (dalam % massa) semakin meningkat, karena air yang terkandung di dalamnya diuapkan.
Proses penguapan air dilangsungkan pada temperatur 110°C, karena pada temperatur tersebut air yang ada dalam larutan mendidih sehingga dapat dipisahkan dari asam laktat yang titik didihnya lebih tinggi. Ketika mulai terjadi polimerisasi, kandungan asam laktat mulai berkurang karena terkonsumsi membentuk imer, oligomer dan polimer. Pada proses olimerisasi kondensasi ini dihasilkan produk samping yaitu air. Namun air ini segera teruapkan dan terkondensasi di luar labu bundar, sehingga tidak mengganggu reaksi.

Tabel 4.1. Kondisi operasi pada tiap run percobaan

<table>
<thead>
<tr>
<th>No</th>
<th>Monomer</th>
<th>Laju Air Nitrogen (ml/hr)</th>
<th>Waktu Polimerisasi (jam)</th>
<th>Pengadukan Mekanik</th>
<th>Tahap Pemanasan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DL-lactic acid (91%-berat)</td>
<td>-</td>
<td>2</td>
<td>Tidak ada</td>
<td>Tidak Bertahap</td>
</tr>
<tr>
<td>2</td>
<td>DL-lactic acid (91%-berat)</td>
<td>-</td>
<td>3</td>
<td>Tidak ada</td>
<td>Tidak Bertahap</td>
</tr>
<tr>
<td>3</td>
<td>DL-lactic acid (91%-berat)</td>
<td>22.5</td>
<td>3.5</td>
<td>Tidak ada</td>
<td>Tidak Bertahap</td>
</tr>
<tr>
<td>4</td>
<td>DL-lactic acid (91%-berat)</td>
<td>31,2-32,9</td>
<td>4</td>
<td>Tidak ada</td>
<td>Tidak Bertahap</td>
</tr>
<tr>
<td>5</td>
<td>L-lactic acid (93%-berat)</td>
<td>31,2</td>
<td>8</td>
<td>Tidak ada</td>
<td>Bertahap</td>
</tr>
<tr>
<td>6</td>
<td>L-lactic acid (93%-berat)</td>
<td>51,9</td>
<td>8</td>
<td>Ada</td>
<td>Bertahap</td>
</tr>
<tr>
<td>7</td>
<td>DL-lactic acid (91%-berat)</td>
<td>34,6</td>
<td>8</td>
<td>Tidak ada</td>
<td>Bertahap</td>
</tr>
</tbody>
</table>

Berikut ini adalah hasil analisa konsentrasi DL-lactic acid selama distilasi untuk Run-3 pada temperatur 110°C:

Gambar 4.1 Kurva Perubahan Konsentrasi DL-lactic acid Selama Distilasi untuk Run-3 pada Temperatur 110°C

Gambar 4.1 memperlihatkan bahwa kadar asam laktat semakin menurun seiring dengan berjalannya waktu. Pengambilan sampel dimulai pada 2 jam setelah titik awal sehingga kadar asam laktat selama proses penguapan air pada 2 jam pertama tidak teramati.

Berikut ini adalah hasil analisa konsentrasi DL-Lactic Acid selama distilasi untuk Run-4 pada temperatur 110°C:

Gambar 4.2 Kurva Perubahan Konsentrasi DL-lactic acid Selama Distilasi untuk Run-4 pada Temperatur 110°C

Pada Gambar 4.2, kadar asam laktat meningkat hingga 99.8% selama distilasi 2 jam pertama. Hal ini terjadi karena air yang ada dalam larutan hampir seluruhnya menguap. Kemudian kadar asam laktat tersebut mulai menurun tajam hingga 36.3%. Hal ini menunjukkan bahwa selama selang waktu tersebut proses polimerisasi mulai terjadi membentuk dimer, trimer, oligomer, dan polimer.

Berikut ini adalah hasil analisa konsentrasi L-lactic acid selama distilasi untuk Run-5 pada temperatur 110°C.
Gambar 4.3. Kurva Perubahan Konsentrasi L-lactic acid Selama Distilasi untuk Run-5 dengan Temperatur 110°C

Terlihat pada Gambar 4.3, konsentrasi asam laktat meningkat hingga 95.6% setelah 1 jam distilasi, kemudian semakin menurun pada jam-jam berikutnya. Pada jam ke-4, sampel tidak dapat diambil lagi karena telah terjadi polimerisasi yang menghasilkan Poly(lactic acid) yang cepat membusui (titik leleh poly(lactic acid) 130-215°C).

Berikut ini adalah hasil analisa konsentrasi D,L-Lactic Acid selama distilasi untuk Run-7 pada temperatur 110°C:

Gambar 4.4. Kurva Perubahan Konsentrasi D,L-lactic acid Selama Distilasi untuk Run-7 pada Temperatur 110°C

Berdasarkan Gambar 4.4, konsentrasi asam laktat meningkat setelah 1 jam penguapan air, kemudian semakin menurun pada jam-jam berikutnya. Pada jam ke-5, sampel tidak dapat diambil lagi karena telah terjadi polimerisasi yang menghasilkan poly(lactic acid) yang cepat membusui (titik leleh poly(lactic acid) 130-215°C).

Berat molekul dianalisis dengan metode viskosimetri dan GPC. Berikut ini adalah hasil analisa polimerisasi asam laktat dengan metode Viskosimetri dan Gel Permeation Chromatography (GPC):

<table>
<thead>
<tr>
<th>No</th>
<th>Viscosity (η)</th>
<th>Viscosity (η) Mw</th>
<th>Viscosity (η) Mh</th>
<th>Viscosity (η) Mv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>450</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>550</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>650</td>
<td>1000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1600</td>
<td>750</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>4200</td>
<td>8200</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>8500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>3600</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Lama waktu polimerisasi mempengaruhi berat molekul polimer. Semakin lama waktu reaksi, berat molekul polimer akan semakin meningkat. Hal ini disebabkan karena semakin banyaknya molekul-molekul asam laktat yang bereaksi membentuk polimer dengan cara polimerisasi kondensasi yang melepaskan molekul-molekul air. Hasilnya dapat dilihat pada run ke-1 sampai ke-4. Run ke-1 sampai ke-4 monomer yang digunakan adalah DL-lactic acid dengan konsentrasi awal 91%. Waktu reaksi diwarnai dari 2 hingga 4 jam. Pada run ke-1 dengan waktu reaksi 2 jam, berat molekul poly(lactic acid) yang dihasilkan adalah 450 gr/mol. Pada run ke-2, dengan waktu reaksi 3 jam berat molekul yang diperoleh...
 adalah 550 gr/mol. Pada run ke-3 dengan waktu reaksi 3.5 jam, berat molekul yang diperoleh adalah 650 gr/mol. Pada run ke-4 dengan waktu reaksi 4 jam, berat molekul yang diperoleh adalah 1.600 gram/mol.

Saat waktu reaksi polimerisasi kurang dari 4 jam, molekul yang terbentuk hanya oligomer-oligomer. Setelah 4 jam baru terbentuk rantai-rantai polimer yang panjang, hasil reaksi antara molekul-molekul oligomer. Berdasarkan percobaan pada run ke-5, 6, dan 7, dengan waktu polimerisasi selama 8 jam, berat molekul polimer yang dihasilkan lebih besar daripada run ke-1, 2, 3 dan 4 yaitu 4.500, 8.500, dan 3.600 gram/mol.

Untuk waktu reaksi yang sama, polimer memiliki berat molekul yang lebih besar jika selama proses reaksi dilakukan pengadukan mekanik.

Sifat stereoisomer mempengaruhi berat molekul polimer. Terdapat tiga jenis stereoisomer, yaitu ataktik, isotaktik, dan sindiotaktik. Hal ini dapat dilihat pada Gambar 2.4, 2.5 dan 2.6. Polimer ataktik dan sindiotaktik dapat menghasilkan polimer dengan berat molekul yang besar.

Poly(lactic acid) yang dihasilkan dari monomer DL-lactic acid membentuk polimer ataktik dan sindiotaktik. DL-lactic acid merupakan campuran rasemik antara D-lactic acid dan L-lactic acid sehingga struktur polimer yang dihasilkan tidak seragam.

Poly(lactic acid) yang dihasilkan dari monomer L-lactic acid lebih mudah membentuk stereoisomer isotaktik sehingga berat molekulnya lebih tinggi daripada monomer D,Lactic acid. Perbandingan ini dapat dilihat pada run ke-5 dan ke-7. Untuk stereoisomer yang berbeda dan waktu reaksi serta kondisi pengadukan mekanik yang sama, poly(lactic acid) yang dihasilkan dari monomer L-lactic acid memiliki berat molekul yang lebih besar daripada poly(lactic acid) yang dihasilkan dari monomer DL-lactic acid.

Salah satu polimer hasil percobaan diuji untuk membuktikan sifat biodegradasi poly(lactic acid). Polimer yang diuji adalah polimer run-5 dengan berat molekul 4200 gram/mol dan monomer L-lactic acid. Polimer ini dibuat dalam bentuk kepingan dan disimpan di dalam tanah serta dibiarakan di alam terbuka.

Poly(lactic acid) yang dihasilkan oleh monomer D,L-lactic acid maupun monomer L-lactic acid tidak larut dalam air. Hal ini karena Poly(lactic acid) memiliki parameter kelinaran (δ, solubility parameter) yang berbeda jauh dengan air. Poly(lactic acid) memiliki parameter kelinaran antara 9.28 – 10 sedangkan air adalah 23.43.
5. Kesimpulan
Berdasarkan percobaan yang telah dilakukan, dapat disimpulkan bahwa poly(lactic acid) yang dihasilkan memiliki karakteristik umum yaitu larut dalam kloroform dan benzene, dan tidak larut di dalam air, monomer D,L-lactic acid membentuk polimer ataktik dan sindiotaktik (berat molekul 450 – 3.600 gram/mol), polimer bersifat lengket dan menyerupai lem, sedangkan monomer L-lactic acid membentuk polimer isotaktik dengan BM 4.200-8.500 gram/mol. Merupakan padatan yang keras.

Daftar Notasi
- a = konstanta pangkat untuk persamaan Mark-Houwink-Sakurada
- CED = cohesive energy density
- δ = parameter kelas kinerja (solubility parameter)
- DE_v = perubahan energi molar pada penguapan
- K = konstanta pengali untuk persamaan Mark-Houwink-Sakurada

[\[n \] \] = viskositas intrinsik
[\[v \] \] = volum molar cairan

Daftar Pustaka