Pemodelan dan simulasi reverse flow reactor untuk oksidasi katalitik metana: pengembangan prosedur operasi start-up

Yogi Wibisono Budhi, Teguh Kurniawan, Yazid Bindar

Abstract


Modeling and simulation of reverse flow reactor for the catalytic oxidation of methane: the development of start-up operating procedures In this modelling and simulation study, three operating procedures during start-up of lean methane (1%-v) oxidation in reverse flow reactor (RFR) have been investigated to get auto-thermal condition, high methane conversion, faster pseudo steady state, and low preheating energy requirement. The RFR model developed based on one-dimension pseudo-homogeneous model for mass balance and heterogeneous model for energy balance. Procedure 1 , the preheating was employed only on the catalyst zone, fails to conduct the auto-thermal reaction and to achieve high conversion. Procedure 2, the preheating was employed for inert and catalyst of left side only, able to achieve the auto-thermal up to switching time (ST) 230 s. Procedure 3, the preheating was employed along the reactor bed, achieve the auto-thermal condition up to ST 300 s. Procedure 2 and 3 achieved the pseudosteadystate at 1000 s for ST 200 s with total conversion during start-up are 95% and 99%. The conversion of Procedure 3 higher than Procedure 2, unfortunately the heat load of Procedure 3 two times higher than Procedure 2.

Keywords: modelling and simulation, catalytic methane oxidation, start-up procedure, reverse flow reactor, switching time


Abstrak

Di dalam studi pemodelan dan simulasi ini, berbagai prosedur operasi reverse flow reactor (RFR) selama start-up untuk oksidasi katalitik metana encer (1%-v) dikaji dengan target sistem beroperasi secara ototermal, konversi metana tinggi, waktu pencapaian kondisi tunak semu (pseudosteady state) cepat, dan beban panas rendah. Pemodelan reaktor didasarkan pada model satu dimensi dan pseudohomogeneous untuk neraca massa, serta heterogen untuk neraca energi. Pemanasan katalis saja pada awal reaksi (Prosedur 1) tidak dapat mencapai kondisi reaktor yang ototermal. Pemanasan katalis dan inert bagian kiri (Prosedur 2) mampu mencapai kondisi reaktor yang ototermal hingga switching time (ST) 230 detik. Pemanasan seluruh bagian reaktor pada awal reaksi (Prosedur 3) mampu mencapai kondisi reaktor yang ototermal pada ST paling lama 300 detik. Prosedur start-up 2 dan 3 untuk ST 200 detik sama-sama mencapai waktu pseudosteady state pada 1000 detik dengan konversi total selama start-up masing-masing 95% dan 99%. Meskipun Prosedur 3 memberikan konversi sedikit lebih tinggi daripada Prosedur 2, namun beban panas Prosedur 3 mencapai dua kali lebih besar daripada Prosedur 2.

Kata kunci: emisi metana, pemodelan dan simulasi, prosedur start-up, reverse flow reactor, switching time.


Full Text:

PDF

References


Balaji, S.; Lakshminarayanan, S. Heat removal from reverse flow reactors used in methane combustion. The Canadian Journal of Chemical Engineering. 2005, 83.

Baressi, A. A.; Baldi, G; Fissore, D. Forced Unsteady-State Reactors as Efficient Devices for Integrated Processes: Case Histories and New Perspectives. Industrial & Engineering Chemistry Research. 2007, 46(25).

Bosomiu, M.; Bozga, G.; Soare, G. Methane Combustion Over a Commercial Platinum on Alumina Catalyst: Kinetics and Catalyst Deactivation. Revue Roumaine de Chimie. 2008, 53(12), 1105–1115.

Effendy, M.; Budhi, Y. W.; Bindar, Y.; Subagjo. Penentuan metode operasi reverse flow reactor dengan umpan fluktuatif dalam pengolahan emisi gas metana di stasiun kompresor, Prosiding SNTKI, Bandung, Indonesia, 19-20 Oktober 2009.

Eigenberger, G.; Nieken, U. Catalytic Combustion with Periodic Flow Reversal. Chemical Engineering Science. 1988, 43, 2109–2115.

Gawdzik, A.; Rakowski, L. The methods of analysis of the dynamic properties of the adiabatic tubular reactor with switch flow. Computers Chemical Engineering. 1989, 13 (10), 1165-1173.

Hayes, R. E.; Kolaczkowski, S. T.; Introduction to catalytic combustion, Gordon and Breach, Amsterdam, 1997.

Hayes, R. E.; Kolaczkowski, S. T.; Li, P. K.; Awdry, S. The palladium catalyzed oxidation of methane: reaction kinetics and the effect of diffusion barriers. Chemical Engineering Science. 2001, 56, 4815-4835.

Hayes, R. E. Catalytic solutions for fugitive methane emissions in the oil and gas sector. Chemical Engineering Science. 2004, 59, 4073-4080.

Kushwaha, A.; Poirier, M.; Sapoundjiev, H.; Hayes, R. E. Effect of reactor internal properties on the performance of a flow reversal catalytic reactor for methane combustion. Chemical Engineering Science. 2004, 59, 4081–4093.

Kolios G.; Frauhammer, J.; Eigenberger, G. Review Autothermal fixed-bed reactor concepts. Chemical Engineering Science. 2000, 55, 5945-5967.

Lee, J. H.; Trimm, D. L. Catalytic combustion of methane. Fuel Processing Technology, 1995, 42, 339-359.

Litto, R.; Hayes, R. E.; Liu, B. Capturing fugitive methane emissions from natural gas compressor buildings, Journal of Environmental Management. 2006, 84 (3), 347-361.

Matros, Y. S; Bunimovich, G. A. Reverse flow operation in fixed bed catalytic reactors. Catal. Rev.-sci. eng. 1996, 38 (1), 1-68.

Moore, S.; Freund, P.; Riemer, P.; Smith, A.; Abatement of methane emissions, IEQ Greenhouse Gas R&D Programme, Cheltenham, 1998.

Otto, K. Methane Oxidation over Pt on γ-Alumina: Kinetics and Structure Sensitivity. Langmuir. 1989, 5, 1364-1369.

Annonymous. FlexPDE 6, PDE Solutions Inc, 2006.

Salomons, S.; Hayes, R. E.; Poirier, M.; Sapoundjiev, H. Flow reversal reactor for catalytic combustion of lean methane mixtures. Catalysis Today. 2003, 83, 59–69.

Sapoundjiev, H.; Aube, F.; Catalytic flow reversal reactor technology: an opportunity for heat recovery and greenhouse gas elimination from mine ventilation air, Canmet energy technology centre, Varennes, Canada, 1999.

Schäfer, M.; Computational Engineering – Introduction to Numerical Methods, Springer, Berlin, 2006; p. 107.




DOI: http://dx.doi.org/10.5614/jtki.2011.10.2.4

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Jurnal Teknik Kimia Indonesia

Jurnal Teknik Kimia Indonesia (JTKI) published by Asosiasi Pendidikan Tinggi Teknik Kimia Indonesia (APTEKIM)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.