Variasi Antioksidan dalam Pembuatan Protected Active Dried Yeast

Ronny Purwadi, Vita Wonoputri, Febri Ulfa Fitriana, Najwa Shufia Choliq

Abstract


Abstrak. Penggunaan antioksidan pada pembuatan protected active dried yeast (PADY) dapat memperpanjang umur simpan ragi kering. Antioksidan yang sering digunakan adalah antioksidan sintesis BHA dan BHT yang diduga bersifat karsinogenik. Penelitian ini bertujuan untuk mencari alternatif antioksidan yang lebih aman. Lima antioksidan yaitu asam sitrat, asam askorbat, tokoferol, natrium eritrobat, dan askorbil palmitat pada rentang konsentrasi 0,025-0,5% diuji pada suspensi ragiuntuk mempelajari efek inhibisi dari antioksidan tersebut. Uji laju produksi CO2 menunjukkan sifat noninhibisi dari asam askorbat, natrium eritorbat, asam sitrat, dan tokoferol, sedangkan sifat inhibisi askorbil palmitat dan BHT perlu diteliti lebih lanjut. Formulasi antioksidan terpilih untuk produksi PADY adalah asam sitrat 0,5%, asam askorbat 0,5%, dan tokoferol 0,5%. Pengeringan ragi dengan spray dryer menghasilkan PADY dengan kadar air sesuai standar. PADY dengan sifat fisik terbaik adalah variasi asam sitrat 0,5% dan asam askorbat 0,5% karena kelarutan dalam air yang baik serta granula yang lebih halus. Stabilitas vitalitas PADY diukur selama 45-50 hari, dan didapatkan PADY dengan antioksidan asam askorbat 0,5% memiliki konstanta laju kematian terendah, yaitu 0,0492/hari, setara dengan umur simpan 20 hari. Dengan demikian, formulasi antioksidan asam askorbat 0,5% berpotensi untuk dikembangkan pada produksi PADY.

 

Kata kunci: antioksidan, ragi kering, stabilitas, vitalitas.

 

Abstract. Variation of Antioxidant in Production of Protected Active Dried Yeast. The use of antioxidants in production of protected active dried yeast (PADY) can increase dried yeast’s shelf life. Usually, the antioxidants used are synthetic antioxidants such as BHA and BHT, which are known to be carcinogenic. Therefore, the aim of this research is to study antioxidant alternative that is safer. Five antioxidants, i.e. citric acid, ascorbic acid, tocopherol, sodium erythorbate, and ascorbyl palmitate in concentration range of 0.025-0.5% were tested on yeast suspension to study its inhibitory effect. CO2 production rate test showed noninhibitory characteristic of ascorbic acid, sodium erythorbate, citric acid, and tocopherol, whereas ascorbyl palmitate and BHT showed inhibitory characteristic. Formulations of antioxidants selected are 0.5% citric acid, 0.5% ascorbic acid, and 0.5% tocopherol. Spray drying of yeast resulted in PADY with moisture content within standard. PADYs with the best physical properties are 0.5% citric acid and 0.5% ascorbic acid variation due to good water solubility and finer granules. Vitality stability of PADY was measured for 45-50 days. PADY with 0.5% ascorbic acid had the lowest death rate constant, i.e. 0.0492/day, which is equivalent to 20-days shelf life. Thus, ascorbic acid antioxidant formulation of 0.5% can be developed in the production of PADY.

 

Keywords: antioxidant, dried yeast, stability, vitality.


Keywords


antioxidant; dried yeast; stability; vitality

Full Text:

PDF

References


Ahmad, S., Oxidative Stress and Antioxidant Defenses in Biology. New York: Chapman & Hall, 2012.

Bayrock, D.; Ingledew, W.M., Fluidized Bed Drying of Baker’s Yeast: Moisture Levels, Drying Rates, and Viability Changes During Drying. Food Research International, 1997, 30, 407–415.

Bendich, A.; Machlin, L.J.; Scandurra, O., The Antioxidant Role of Vitamin C. Free Radical Biology & Medicine, 1986, 2, 419–444.

Eleutherio, E.; Brasil, A.A.B.; França, M.B.; Almeida, D.S.; Rona, G.B.; Magalhães, R.S.S., Oxidative Stress and Aging: Learning from Yeast Lessons. Fungal Biology, 2018, 122(6), 514–525.

Fernandes, P.N.; Mannarino, S.C.; Silva, C.G.; Pereira, M.D.; Panek, A.D.; Eleutherio, E.C.A., Oxidative Stress Response in Eukaryotes: Effect of Glutathione, Superoxide Dismutase and Catalase on Adaptation to Peroxide and Menadione Stresses in Saccharomyces cerevisiae. Redox Report: Communications in Free Radical Research, 2007, 12, 236–244.

Finkel, T.; Holbrook, N.J., Oxidants, Oxidative Stress and the Biology of Ageing. Nature, 2000, 408, 239–247.

Frankel, E.; Huang, S.; Kanner, J.; German, J., Interfacial Phenomena in The Evaluation of Antioxidants: Bulk Oils vs. Emulsions. Journal of Agricultural and Food Chemistry, 1994, 42, 1054–1059.

Fuller, A.V., A Modified Form of the Smith Fermentation Tube. Industrial & Engineering Chemistry, 1920, 12(6), 595–595.

Halliwell, B.; Whiteman, M., Measuring Reactive Species and Oxidative Damage in Vivo and in Cell Culture: How Should You Do It and What Do the Results Mean?. British Journal of Pharmacology, 2004, 142, 231–255.

Harman, D., Free Radical Theory of Aging: An Update–Increasing the Functional Life Span. New York: Annals of the New York Academy of Sciences, 2006.

Herrero, E.; Ros, J.; Belli, G.; Cabiscol, E., Redox Control and Oxidative Stress in Yeast Cells. Biochimica et Biophysica Acta, 2008, 1780, 1217–1235.

Hudson, B.J.F., Food Antioxidant. New York: Elsevier Science Publishers, 1990.

Jamieson, D.J., Oxidative Stress Responses of Yeast Saccharomyces cereviceae. Yeast, 1998, 14, 1511–1527.

Lam, Y.T.; Stocker, R.; Dawes, I.W., The Lipophilic Antioxidants Alpha-tocopherol and Coenzyme Q10 Reduce The Replicative Lifespan of Saccharomyces cerevisiae. Free Radical Biology and Medicine, 2010, 49, 237–244.

Lee, B.H., Fundamentals of Food Biotechnology, 2nd ed. West Sussex: Wiley Blackwell, 2015.

Liebler, D.C.; Baker, P.F.; Kaysen, K.L., Oxidation of Vitamin E: Evidence for Competing Autoxidation and Peroxyl Radical Trapping Reaction of the Tocopheroxy Radical. Journal of the American Chemical Society, 1990, 112, 6995–7000.

Lobo, V.; Patil, A.; Phatak, A.; Chandra, N., Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacognosy Reviews, 2010, 4, 118–126.

Mäkinen, M.; Kähkönen, M.; Hopia, A., Ascorbic Acid and Ascorbyl Palmitate Have Only Minor Effect on the Formation and Decomposition of Methyl Linoleate Hydroperoxides. European Journal of Lipid Science and Technology, 2001, 103(10), 683–687.

Nohl, H.; Kozlov, A.V.; Grille, L.; Staniek, K., Cell Respiration and Formation of Reactive Oxygen Species: Facts and Artefacts. Biochem. Soc. Trans., 2003, 31, 1308–1311.

NPCS Boards of Consultants & Engineers, Handbook on Fermented Foods and Chemicals. New Delhi: Asia Pacific Business Press Inc., 2011.

Purwadi, R.; Rizkiana, J.; Mulyono, M.P., Pengeringan Ragi : Pengaruh Penambahan Emulsifier Terhadap Kualitas Ragi Kering. Skripsi Sarjana, Institut Teknologi Bandung, 2008a.

Purwadi, R.; Stefanie, P.; Nicko, Production of Dry Baker’s Yeast. Skripsi Sarjana, Institut Teknologi Bandung, 2008b.

Sheu, S.S.; Nauduri, D.; Anders, M.W., Targeting Antioxidants to Mitochondria: A New Therapeutic Direction. Biochimica et Biophysica Acta–Molecular Basis of Disease, 2006, 1762, 256–265.

Soares, D.G.; Adreazza, A.C.; Salvador, M., Sequestering Ability of Butylated Hydroxytoluene, Propyl Gallate, Resveratrol, and Vitamins C and E against ABTS, DPPH, and Hydroxyl Free Radical in Chemical and Biologycal Systems. Journal of Agricultural and Food Chemistry, 2003, 51, 1077–1080.

Turrens, J.F., Mitochondrial Formation of Reactive Oxygen Species. The Journal of Physiology, 2003, 552, 335–344.

Verachtert, H.; Mort, R.D., Yeast: Biotechnology and Biocatalysis. New York: Marcel Dekker, 1990.




DOI: http://dx.doi.org/10.5614/jtki.2020.19.1.1

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Teknik Kimia Indonesia

Jurnal Teknik Kimia Indonesia (JTKI) published by Asosiasi Pendidikan Tinggi Teknik Kimia Indonesia (APTEKIM)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.