Pemanfaatan Asam Humat Dari Sampah Organik Sebagai Adsorben Pada Limbah Cair Sintesis Timbal (Pb)

Maimunawaro Maimunawaro, Sazila Karina Rahman, Chairul Irawan

Abstract


Abstrak. Industri pelapisan logam disamping memiliki konstribusi bagi perekonomian Indonesia, namun dalam prosesnya menghasilkan limbah cair yang memberikan dampak negatif bagi lingkungan karena mengandung logam berat. Salah satu teknik pengolahan limbah cair yaitu adsorpsi menggunakan asam humat dari ekstraksi sampah organik yang dijadikan adsorben. Kelebihan proses adsorpsi ini ialah pengerjaannya mudah, biaya relatif murah, relatif aman dari kontaminasi zat-zat kimia, serta tidak memberikan polusi berarti bagi lingkungan. Ekstraksi asam humat dari sampah organik berlangsung secara bertahap menggunakan proses ekstraksi dengan 1 L NaOH dengan variasi pelarut 0,1 N dan 0,5 N. Karakterisasi sebelum dan sesudah ekstraksi menggunakan Fourier-transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), dan Scanning Electron Microscope (SEM), masing-masing untuk mengetahui gugus fungsional, struktur kristal, serta struktur morfologi pada asam humat. Proses adsorpsi menggunakan asam humat sebagai adsorben dilakukan secara batch dengan massa adsorben 1 g/L, kecepatan pengadukan 150 rpm, temperatur ruang dan pH 6,7–7,0 selama 1 jam. Analisa setelah adsorpsi menggunakan metode Atomic Absorption Spectrofotometer (AAS) untuk uji kadar timbal (Pb (II)). Hasil adsorpsi timbal (Pb) pada kedua variasi pelarut adsorben dengan pH awal 6,7–7,0 memiliki keefektifan masing-masing mencapai hampir 98%.

 

Kata kunci:adsorben, asam humat, ekstraksi, sampah organik.

 

Abstract. Removal of Lead (II) of Synthetic Wastewater Using Humic Acid Extracted from Organic Waste As Adsorbent.Metal plating Industry mining productions contribute to the growth of the Indonesian economy, but during the processes usually create a negative environmental impact such as heavy metals. The adsorption method is one of various methods for wastewater treatment. The humic acid as adsorbent in the adsorption method had been extracted from organic waste. The advantages of this method are simple, cheap and secure from chemical contaminant. The extraction of humic acid from organic waste takes place gradually using 1 L NaOH with a variety of solvents of 0.1 N and 0.5 N.The humic acid before and after treatment was characterized using Fourier-transform infrared spectroscopy (FTIR) X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM).  The adsorption process was carried out in batch experiment with mass adsorbent of 1 g/L,  stirring speed of 150 rpm, room temperatur, pH around 6.7–7.0  for 1 hour. The result showed by Atomic Absorption Spectroscopy (AAS) analysis characterize that adsorption lead (II) in several adsorbent concentrations at pH 6.7–7.07 has effectiveness 98%.

 

Keywords: adsorbents, extraction, humic acid, organic waste.

 


Keywords


adsorbents; extraction; humic acid; organic waste

Full Text:

PDF

References


Boguta, P.; D'Orazio, V.; Senesi, N.; Sokołowska, Z.; Szewczuk-Karpisz, K., Insight Into the Interaction Mechanism of Iron Ions with Soil Humic Acids. The Effect of The pH and Chemical Properties of Humic Acids. Journal of Environmental Management, 2019, 245, 367–374.

Boguta, P.; D'Orazio, V.; Sokołowska, Z.; Senesi, N., Effects of Selected Chemical and Physicochemical Properties of Humic Acids from Peat Soils on their Interaction Mechanisms with Copper Ions at Various pHs. Journal of Geochemical Exploration, 2016, 168, 119–126.

Ciesielczyk, F.; Goscianska, J.; Zdarta, J.; Jesionowski, T., The Development of Zirconia/Silica Hybrids for the Adsorption and Controlled Release of Active Pharmaceutical Ingredients. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545, 39–50.

de Melo, B.A.G.; Motta, F.L.; Santana, M.H.A., Humic Acids: Structural Properties and Multiple Functionalities for Novel Technological Developments. Materials Science and Engineering: C, 2016, 62, 967–974.

Hayes, M.H.B., Humic Substances: Progress Towards More Realistic Concepts of Structures. Davies, G.; Ghabbour, E.A., eds., Humic Substances: Structures, Properties, and Uses. Cambridge: The Royal Society of Chemistry, 1998, pp. 1–27.

Hu, J.; Wu, J.; Qu, X.; Li, J., Effects of Organic Wastes on Structural Characterizations of Humic Acid in Semiarid Soil under Plastic Mulched Drip Irrigation. Chemosphere, 2018, 200, 313–321.

Kementerian Lingkungan Hidup Republik Indonesia, Peraturan Menteri Lingkungan Hidup Nomor 5 Tahun 2014 tentang Baku Mutu Air Limbah, 2014.

Kolla, S.; Paciolla, M.D.; Sein, L.T.; Moyer, J.; Walia, D.; Heaton, H.; Jansen, S.A., Humic Acid As A substrate for Alkylation. Davies, G.; Ghabbour, E.A. eds., Humic Substances: Structures, Properties, and Uses. Cambridge: The Royal Society of Chemistry, 1998, pp. 215–225.

Li, L.; Huang, W.; Peng, P.A.; Sheng, G.; Fu, J., Chemical and Molecular Heterogeneity of Humic Acids Repetitively Extracted from A Peat. Soil Science Society of America Journal, 2003, 67, 740–746.

Lu, Y.; Liang, Y.; Liu, F.; Wang, Z.; Shi, Z., Nano Scale Visualization of Enhanced Adsorption and Distribution of Humic Acid on Hematite: Effect of Pb(II) Ions. Chemical Geology, 2020, 541, 119573.

Mao, J.; Hu, W.; Schmidt-Rohr, K.; Davies, G.; Ghabbour, E.A.; Xing, B., Structure and Elemental Composition of Humic Acids: Comparison of Solid-State 13C NMR Calculations and Chemical Analyses. Davies, G.; Ghabbour, E.A. eds., Humic Substances: Structures, Properties, and Uses. Cambridge: The Royal Society of Chemistry, 1998, pp. 79–90.

Naidja, A.; Huang, P.M.; Anderson, D.W.; Van Kessel, C., Fourier Transform Infrared, UV-Visible, and X-Ray Diffraction Analyses of Organic Matter in Humin, Humic Acid, and Fulvic Acid Fractions in Soil Exposed to Elevated CO2 and N Fertilization. Applied Spectroscopy, 2002, 56, 318–324.

Peña-Méndez, E.; Havel, J.; Patocka, J., Humic Substances–Compounds of Still Unknown Structure: Applications in Agriculture, Industry, Environment, and Biomedicine. Journal of Applied Biomedicine, 2005, 3, 13–24.

Qi, Y.; Zhu, J.; Fu, Q.; Hu, H.; Huang, Q., Sorption of Cu by Humic Acid from The Decomposition of Rice Straw in The Absence and Presence of Clay Minerals. Journal of Environmental Management, 2017, 200, 304–311.

Scaglia, B.; Tambone, F.; Adani, F., Cr(VI) Reduction Capability of Humic Acid Extracted from the Organic Component of Municipal Solid Waste. Journal of Environmental Sciences, 2013, 25, 487–494.

Xu, H.; Hu, X.; Chen, Y.; Li, Y.; Zhang, R.; Tang, C.; Hu, X., Cd(II) and Pb(II) Absorbed on Humic Acid-Iron-Pillared Bentonite: Kinetics, Thermodynamics and Mechanism of Adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 126005.

Yang, K.; Miao, G.; Wu, W.; Lin, D.; Pan, B.; Wu, F.; Xing, B., Sorption of Cu2+ on Humic Acids Sequentially Extracted from a Sediment. Chemosphere, 2015, 138, 657–663.

Yang, L.; Wei, Z.; Zhong, W.; Cui, J.; Wei, W., Modifying Hhydroxyapatite Nanoparticles with Humic Acid for Highly Efficient Removal of Cu(II) from Aqueous Solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 9–21.

Yunitawati; Nurmasari, R.; Mujiyanti, D.R.; Umaningrum, D., Kajian pH dan Waktu Kontak Optimum Adsorpsi Cd(II) dan Zn(II) pada Humin. Sains dan Terapan Kimia, 2011, 5(2), 151–157.




DOI: http://dx.doi.org/10.5614/jtki.2020.19.1.5

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Teknik Kimia Indonesia

Jurnal Teknik Kimia Indonesia (JTKI) published by Asosiasi Pendidikan Tinggi Teknik Kimia Indonesia (APTEKIM)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.