Kinetic and products of C3H3 and C4H2 reaction: theoretical and computational study

Antonius Indarto

Abstract


The formation of first aromatic ring was suggested to be a crucial step of the PAHs and soot growth mechanism. In general, four-, five-, six-, or seven-membered ring molecules could be formed by the addition reaction of two hydrocarbon molecules resulted from many different pathways. Small hydrocarbon molecules with numerous concentrations during combustion/pyrolysis are suspected to play an important role. Propargyl radical (C3H3) and butadiene (C4H2) have been chosen as the initial reactants in this discussion, since they are found at relatively high concentrations in flame experiments to examine the above particular reaction. Following initial addition mechanisms, their adduct intermediate can form a ring molecule and undergo subsequent rearrangement. All possible molecular structures were considered and the viability of each channel was assessed through a “RRKM + master equation” kinetic study. This study is an attemp and example to develop and apply molecular computational method for solving problems in the chemical engineering.

Keywords: reaction kinetic, ab-initio calculation, RRKM theory, unimolecular reaction, propargyl, butadiene.


Abstrak

Reaksi pembentukan cincin aromatic pada senyawa hidrokarbon merupakan mekanisme awal terpenting dari pembentukan Polisiklik Aromatik Hidrokarbon (PAH) dan jelaga karbon. Secara umum, senyawa hidrokarbon dengan cincin berjumlah empat, lima, enam, atau tujuh dapat dibentuk oleh reaksi gabungan dua molekul hidrokarbon. Molekul hidrokarbon dengan jumlah atom karbon rendah akan memainkan peranan penting ditinjau dari besarnya konsentrasi senyawa ini saat pembakaran/pirolisis. Dalam diskusi ini, reaksi propargil radikal (•C3H3) dan butadiena (C4H2) digunakan sebagai studi kasus karena konsentrasinya yang relatif tinggi dalam percobaan laboratorium dengan menggunakan bunsen. Secara garis besar, reaksi pembentukan rantai lingkar (cincin) dapat tercapai baik secara langsung setelah reaksi adisi atau melalui penataan ulang molekul. Berbagai struktur molekul dan mekanisme yang mungkin ada dalam reaksi ini akan dianalisis melalui studi kinetika "RRKM + persamaan master (master equation)". Studi ini juga ditujukan sebagai usaha dan contoh untuk memperkenalkan penggunaan kimia komputasi molekuler dalam menyelesaikan berbagai problem di bidang teknik kimia.

Kata kunci: kinetika reaksi, perhitungan ab-initio, teori RRKM, reaksi unimolekular, propargil, butadiena.


Full Text:

PDF

References


Adamson, J. D.; Morter, C. L.; DeSain, J. D.; Glass, G. P.; Curl, R. F. J. Propargyl from the reaction of singlet methylene with acetylene. Phys. Chem. 1996, 100(6), 2125-2128.

Alkemade, U.; Homann, K. H., Formation of C6H6 isomers by recombination of propynyl in the system sodium vapour/propynylhalide, Z. Phys. Chem. NeueFolge. 1989, 161, 19-34.

Barker, J. R. Multiple-well, multiple-path unimolecular reaction systems. I. MultiWell computer program suite. Int. J. Chem. Kinetics. 2001, 33(4), 232-245.

Barker, J.R.; Ortiz, N.F.; Preses, J.M.; Lohr, L.L.; Maranzana, A.; Stimac, P. J.; Nguyen, L. T. MultiWell-2009 Software; University of Michigan: Ann Arbor, MI, 2009.

Becke, A. D. Density-functional thermo-chemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.

Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988, 38(6), 3098–3100.

Bittner, J. D.; Howard, J. B. Composition profiles and reaction mechanisms in a near-sooting premixed benzene/oxygen/argon flame. Proc. Combust. Inst. 1981, 18(1), 1105-1116.

Cole, J. A.; Bittner, J. D.; Longwell, J. P.; Howard, J. B. Formation of aromatic compounds in aliphatic flame. Combust. Flame. 1984, 56(1), 51-70.

National Research Council, Committee on Challenges for the Chemical Science in the 21st Century.Beyond the Molecular Frontier; National Academies Press.: Washington, 2003; 71-94.

Cramer, C.J. Essentials of Computational Chemistry; John Wiley & Sons, Ltd.: Chichester, 2002; 191–232.

da Silva, G.; Bozzelli J. W., The C7H5 fulvenallenyl radical as a combustion intermediate: potential new pathways to two- and three-ring PAHs. J. Phys. Chem. A. 2009, 113(44), 12045–12048.

Dockery, W. D. Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ. Health Perspect. 2001, 109(4), 483-486.

Frenklach, M.; Clary, D. W.; Yuan, T.; Gardiner, W. C., Jr.; Stein, S. E. Mechanism of soot formation in acetylene-oxygen mixtures. Combust. Sci. & Technol. 1986, 50(1-3), 79–115.

Frenklach, M.; Warnatz, J. Detailed modeling of PAH profiles in a sooting low-pressure acetylene flame. Comb. Sci. & Tech. 1987, 51(4-6), 265–283.

Gilbert, R. G.; Smith, S. C. Theory of unimolecular and recombination reactions. Blackwell Scientific, Oxford, 1990.

Hinshelwood, C. N, On the theory of unimolecular reactions. Proc. R. Soc. Lond. A 192, 113, 230-233.

Hippler, H.; Troe J.; Wendelken H. J. Collisional deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene. J. Chem. Phys. 1983, 78(11), 6709-6717.

Holbrook, K. A.; Pilling M. J.; Robertson S. H. Unimolecular reactions; John Wiley & Sons: Chichester, 1996.

Homann, K.; Wagner, H. G. Some new aspects of the mechanism of carbon formation in premixed flames. Intl. Symp. Combust. 1967, 11(1), 371-379.

Indarto, A.; Giordana A.; Ghigo, G.; Maranzana, A.; Tonachini, G. Polycyclic aromatic hydrocarbon formation mechanism in the “particle phase”. A theoretical study. Phys. Chem. Chem. Phys. 2010, 12, 9429-9440.

Indarto, A. Soot growing mechanism from polyynes: A review. Environ. Eng. Sci. 2009, 26(5), 251-257.

Indarto, A.; Choi, J. W.; Lee, H. Oxidation of chloroform in a gliding-arc plasma: observation of molecular vibrations. IEEE Trans. Plasma Sci. 2009a, 37(8), 1526-1531.

Indarto, A.; Giordana, A.; Ghigo, G.; Tonachini, A. Formation of PAHs and soot platelets: multi configuration theoretical study of the key step in the ring closure–radical breeding polyyne-based mechanism. J. Phys. Org. Chem. 2009b, 23(5), 400-410.

Kaiser, R. I.; Vereecken, L.; Peeters, J.; Bettinger, H. F.; Schleyer P. V. R.; Schaefer, H. F., III. Elementary reactions of the phenyl radical, C6H5, with C3H4 isomers, and of benzene, C6H6, with atomic carbon in extraterrestrial environments. Astro. & Astrophys. 2003, 406(2), 385-391.

Landera, A.; Krishtal, S. P.; Kislov, V. V.; Mebel, A. M.; Kaiser, R. I. Theoretical study of the C6H3 potential energy surface and rate constants and product branching ratios of the C2H(2∑+) + C4H2(1∑(g)+) and C4H(2∑+) + C2H2(1∑(g)+) reactions. J. Chem. Phys. 2008, 128(21), 214301.

Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988, 37(2), 785-789.

Levine, I.N. Quantum chemistry; Prentice Hall: New Jersey, 1991; 455-544.

Li, Y.; Zhang, L.; Tian, Z.; Yuan, T.; Zhang, K.; Yang, B.; Fei. Q. Investigation of the rich premixed laminar acetylene/oxygen/argon flame: Comprehensive flame structure and special concerns of polyynes. Proc. Combust. Inst. 2009, 32(1), 1293-1300.

Lindemann, F. A. Discussion on the radiation theory of chemical action. Tran. Faraday Soc. 1922, 17, 598-606.

Marinov, N. M.; Castaldi, M. J.; Melius, C. F.; Tsang, W. Aromatic and polycyclic aromatic hydrocarbon formation in a premixed propane flame. Combust. Sci. Technol. 1997, 128(1-6), 295-342.

Meijer, E. J.; Sprik, M. A density-functional study of the intermolecular interactions of benzene. J. Chem. Phys. 1996, 105(19), 8684-8689.

Melius, C. F.; Miller, J. A.; Evleth, E. M. Unimolecular reaction mechanisms involving C3H4, C4H4, and C6H6 hydrocarbon species. Proc. Combust. Inst. 1992, 24(1), 621-628.

Miller, J. A.; Klippenstein, S. J. The recombination of propargyl radicals and other reactions on a C6H6 potential. J. Phys. Chem. A. 2003, 107(39), 7783–7799.

Miller, J. A.; Melius, C. F. Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combust. Flame.1992, 91(1), 21-39.

Parr, R.G.; Yang, W. Chapter 3.Density functional theory of atoms and molecules; Oxford University Press: New York, 1989.

Pope, C. A.; Burnett, R. T.; Thun, M. J.; Valle, E. E.; Krewski, D.; Ito, K.; Thurston, G. D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Amer. Med. Assoc. (JAMA). 2002, 287(9), 1132-1141.

Santiago, R. M.; Indarto, A. A density functional theory study of phenyl formation initiated by ethynyl radical (C2H•) and ethyne (C2H2). J. Mol. Model. 2008, 14(12), 1203-1208.

Stein, S. E.; Walker, J. A.; Suryan, M. M.; Fahr, A. A new path to benzene in flames. Intl. Symp. Combust. 1990, 23(1), 85-90.

Walch, S. P. Characterization of the minimum energy paths for the ring closure reactions of C4H3 with acetylene. J. Chem. Phys. 1995, 103(19), 8544-8547.

Westmoreland, P. R.; Dean, A. M.; Howard, J. B.; Longwell, J. P. Forming benzene in flames by chemically activated isomerization. J. Phys. Chem. 1989, 93(25), 8171-8180.

Yang, B.; Li, Y.; Wei, L.; Huang, C.; Wang, J.; Tian, Z.; Yang, R.; Sheng, L.; Zhang, Y.; Qi, F. An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization. Proc. Combust. Inst. 2007, 31(1), 555-563.

Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2006, 2(2), 364-382.




DOI: http://dx.doi.org/10.5614/jtki.2011.10.2.7

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Jurnal Teknik Kimia Indonesia

Jurnal Teknik Kimia Indonesia (JTKI) published by Asosiasi Pendidikan Tinggi Teknik Kimia Indonesia (APTEKIM)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.