PENGARUH PENAMBAHAN PROPANA DALAM BAHAN BAKAR TERHADAP KARAKTERISTIK SEL TUNAM OXIDA PADAT

Isdiriayani Nurdin, Astrilia Damayanti, Ocktavianus Lede M.R., Pramuyo Widiatmoko
Departemen Teknik Kimia, Fakultas Teknologi Industri,
Institut Teknologi Bandung
Jl. Ganesha 10 Bandung
Email: isdi@che.itb.ac.id, telepon: 022-2500989

Abstrak

Sel tunam oksida padat (SOFC) merupakan salah satu sumber energi terbaru yang tidak menimbulkan dampak negatif terhadap lingkungan dan toleran terhadap kontaminan dalam bahan bakar. Tujuan percobaan ini adalah mempelajari pengaruh penambahan propana dalam bahan bakar terhadap karakteristik SOFC. Pada penelitian ini SOFC yang diuji terdiri dari komponen utama sel tipe ASCI buatan InDEc B.V, dilengkapi dengan cangkang terbuat dari stainless steel tipe AISI 304, yang merangkap sebagai distributor gas umpan, dan isolator dari bahan asbes serta semen tahan api tipe C-12 high alumina. Karakter SOFC yang dipelajari pada penelitian ini meliputi kondisi operasi optimum, polarisasi, dan umur sel. Hasil percobaan menunjukkan bahwa operasi SOFC optimal pada temperatur 700°C dengan laju alir H₂ 45 mL/menit dan udara 225 mL/menit. Konsentrasi propana dalam bahan bakar 22,2 %-v memberikan umur sel yang lebih panjang, arus maksimum yang lebih kecil, dan efisiensi tegangan yang lebih besar daripada dengan bahan bakar gas hidrogen saja. Konsentrasi propana dalam gas bahan bakar sampai dengan 22,2 %-v tidak mempengaruhi tegangan sel. Kurva polarisasi yang diperoleh menunjukkan bahwa reaksi sel terkendali oleh perpindahan massa.

Kata Kunci: SOFC, Umur, Polarisasi, Efisiensi

Abstract

Fuel cell is a renewable energy source that does not create any negative effect to the environment. One of the advantage of the Solid Oxide Fuel Cell (SOFC) is its tolerance to fuel contaminants. This research is aimed to study the effect of propane addition into fuel gas on SOFC's characters. SOFC tested during this research consists of main components functioned as feed gas distributor, and insulator made of asbestos and C-12 high alumina. SOFC's characters studied in this research including optimum operating conditions, polarization, and expected life time of the cell. The test results show that optimum operating conditions of tested SOFC are 700°C, 45 mL H/minute and 225 mL air/minute. Cell using 22,2 %-vol propane in the fuel gives a longer lifetime, a smaller maximum current, and a higher voltage efficiency than such using hydrogen only as fuel. Propane concentration in fuel gas up to 22,2 %-vol has not any significant influence to cell voltage. The obtained polarization curve reveals that cell reactions are mass transfer controlled.

Keywords: SOFC, Life Time, Polarization, Efficiency
1. Pendahuluan

Kebutuhan energi di dunia semakin lama semakin meningkat seiring dengan peningkatan jumlah penduduk. Akan tetapi cadangan sumber energi yang cukup banyak digunakan sekarang ini, yaitu minyak bumi, semakin menipis. Oleh karena itu semakin banyak dikembangkan berbagai sumber energi alternatif, seperti energi matahari, energi panas bumi, energi air, dan berbagai sumber energi lainnya.

Dasar pemilihan sumber energi yang akan dimanfaatkan antara lain adalah kemungkinan bahaya yang ditimbulkan oleh dampak negatif penggunaan sumber energi tersebut, bagi manusia maupun lingkungan sekitarnya. Hal ini disebabkan oleh semakin tingginya tingkat pencemaran yang dapat membahayakan kesehatan hidup bagi biota. Salah satu sumber energi terbarukan yang tidak menyebabkan dampak negatif terhadap lingkungan adalah sel tenun (fuel cell). Tidak seperti pada proses pembakaran, sel tenun menghasilkan energi tanpa menimbulkan pencemaran udara. Selain itu efisiensi dari sel tenun ini cukup tinggi, yaitu sekitar 50-60%.

Prinsip operasi sel tenun adalah menghasilkan energi listrik dari energi kimia melalui reaksi elektrokimia, sama dengan prinsip kerja baterai. Akan tetapi karena sumber energi kimia untuk melangsungkan reaksi dalam sel tenun dipasok dari luar, maka umur sel tenun tidak tergantung pada sumber energi kimia yang ada dalam sel. Sumber energi kimia untuk sel tenun berupa gas hidrogen atau hidrokarbon ringan dan oksigen dari udara sebagai oksidan.

Hidrogen sebagai bahan bakar utama sel tenun dapat dipereoleh dari berbagai sumber seperti elektrolisis air, reformasi hidrokarbon ringan, atau sebagai hasil samping reaksi pembuatan propilen dari propana. Jika hidrogen by product yang terkontaminasi propana dapat digunakan sebagai bahan bakar sel tenun tanpa menurunkan kinerja sel, maka biaya operasi sel tenun dan harga energi listrik yang dihasilkan akan menjadi lebih murah.

Minh dan Takahashi (1995) telah melakukan uji SOFC dengan komponen utama katoda LaMnO₃, anoda Ni-YSZ dan elektrolit YSZ, namun tidak memberikan data karakteristik SOFC.

Jika ditinjau dari perhitungan termodinamik saja, diperkirakan bahwa penambahan propana dalam bahan bakar akan menurunkan tegangan dan efisiensi tegangan sel, tetapi dapat memperpanjang umur sel. Hasil percobaan yang tidak sesuai dengan perhitungan termodinamik kemungkinan disebabkan oleh faktor-faktor kinetik.

2. Fundamental
Sekarang umum, reaksi yang terjadi dalam sel tenun adalah sebagai berikut:

\[\text{H}_2 \rightarrow 2\text{H}^+ + 2e^- \] (1)
\[\frac{1}{2}\text{O}_2 + 2\text{H}^+ + 2e^- \rightarrow \text{H}_2\text{O} \] (2)
\[\text{H}_2 + \frac{1}{2}\text{O}_2 \rightarrow \text{H}_2\text{O} \] (3)

Berdasarkan elektrolit yang digunakan, sel tenun dapat dibagi menjadi beberapa tipe, yaitu Alkaline Fuel Cell (AFC), Phosphoric Acid Fuel Cell (PAFC), Polymer electrolyte Fuel Cell (PEFC), Molten carbonate Fuel Cell (MCFC), Solid Oxide Fuel Cell (SOFC), dan Proton Exchange Membrane Fuel Cell (PEMFC).

Salah satu jenis sel tenun yang sedang dikembangkan saat ini adalah Solid Oxide Fuel Cell (SOFC). Sel ini menggunakan oksida padat sebagai elektrolit. Reaksi yang terjadi dipermukaan elektroda adalah sebagai berikut:

\[\frac{1}{2}\text{O}_2 + 2e^- \rightarrow \text{O}^{2-} \] (4)
\[\text{H}_2 + \text{O}^{2-} \rightarrow \text{H}_2\text{O} + 2e^- \] (5)
\[\text{H}_2 + \frac{1}{2}\text{O}_2 \rightarrow \text{H}_2\text{O} \] (6)

Sel tenun ini cukup menarik untuk dikembangkan karena memiliki toleransi tinggi terhadap kontaminan bahan bakar, mudah ditangani karena tidak melibatkan fasa cair, dapat digunakan di daerah terpencil, dan gas buangannya yang panas dapat digunakan untuk cogeneration sehingga dapat meningkatkan efisiensi energi total yang dihasilkan. Di sisi lain, temperatur operasi yang tinggi dan atmosfer yang kaya oksigen memerlukan bahan konstruksi yang tahan temperatur tinggi dan korosi temperatur tinggi. Bahan konstruksi tersebut tidak mudah diperoleh dan mahal harga.

Unjuk kerja sel tenun dipengaruhi oleh berbagai faktor, antara lain bahan dan struktur anoda, katoda, dan elektrolit, tekanan dan temperatur operasi, serta komposisi dan laju alir gas umpan. Parameter yang dapat digunakan sebagai tolak ukir kinerja SOFC adalah tegangan yang dihasilkan, karakteristik polarisasi, efisiensi konversi energi, dan umur sel.
Pengaruh Penambahan Propana dalam Bahan Bakar terhadap Karakteristik Sel Tunam Oksida Padat
(Isminawati Nurdin, dkk.)

Di dalam suatu sistem reversibel yang beroperasi pada tekanan dan temperatur konstan, kerja listrik sama dengan perubahan energi bebas Gibbs. Persamaan tersebut dapat dilihat pada persamaan berikut:

\[
\Delta G = -w_{FE} \tag{7}
\]

\[
w_{FE} = nFE \tag{8}
\]

\[
\Delta G = -nFE \tag{9}
\]

Suatu sel tunam akan berfungsi apabila reaksi berjalan spontan, sehingga perubahan energi bebas Gibbs bernilai negatif dan potensial sel yang dihasilkan bernilai positif. Perubahan potensial reversibel terhadap temperatur pada tekanan konstan dapat ditunjukkan oleh persamaan berikut:

\[
\frac{\Delta H}{RT} = \frac{\Delta S}{nF} \tag{10}
\]

Dari persamaan (10) terlihat bahwa apabila perubahan entropi bernilai negatif, maka kenaikan temperatur akan menurunkan potensial sel yang dihasilkan. Sedangkan pengaruh tekanan terhadap potensial sel dapat dinyatakan dengan persamaan:

\[
\frac{\Delta H}{RT} = \frac{-\Delta V}{nF} \tag{11}
\]

Jika reaksi terjadi pada fasa gas dan diasumsikan sebagai gas ideal, maka:

\[
E_{2} - E_{1} = \frac{2,303 (\Delta N)RT}{nF} \log \left(\frac{P_{2}}{P_{1}} \right) \tag{12}
\]

Dari persamaan (11) terlihat bahwa perubahan tekanan pada temperatur kamar tidak berpengaruh besar terhadap potensial. Pada kondisi ideal, sel tunam yang menggunakan umpan H₂ dan O₂ dapat menghasilkan tegangan sebesar 1,23 V pada temperatur 25°C. Namun pada operasinya, tegangan yang dihasilkan lebih kecil dan harga tersebut akan berkurang seiring dengan penambahan beban. Tegangan yang hilang ini disebut sebagai polarisasi seperti yang diilustrasikan dalam Gambar 1.

Polarisasi yang terjadi di dalam sel terdiri atas polarisasi aktivasi, polarisasi ohmic, dan polarisasi konsentrasi. Polarisasi aktivasi menunjukkan energi aktivasi untuk reaksi elektrodik yang lambat. Polarisasi aktivasi dinyatakan dengan persamaan Tafel sebagai berikut

\[
\eta_{oc} = a + b \log i \tag{13}
\]

Polarisasi ohmic, menunjukkan penjumlahan dari semua energi yang hilang akibat hambatan di dalam sel, termasuk impedansi listrik yang melalui elektroda, kontak dan pengumpul arus, serta impedansi ionik yang melalui elektrolit. Polarisasi ini mengikuti hukum Ohm, yaitu:

\[
\eta_{ac} = iR \tag{14}
\]

Sedangkan Polarisasi konsentrasi, menunjukkan energi yang hilang akibat perpindahan massa yang lambat, sehingga arus yang mengalir akan mencapai harga maksimum yang disebut sebagai rapat arus limit, i, yang proporsional dengan laju perpindahan massa maksimum. Polarisasi ini dirumuskan sebagai:

\[
\eta_{conc} = \left(\frac{RT}{nF} \right) \ln \left(\frac{i}{i_{l}} \right) \tag{15}
\]

3. Metodologi
Alat utama yang digunakan dalam "Karakterisasi Sel Tunam Oksida Padat" adalah sel tunam (Gambar 2), yang terdiri dari komponen

Tabel 1. Komponen Utama

<table>
<thead>
<tr>
<th>Bagian</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Anoda</td>
<td>terbuat dari Nickel Oksida/ytrria stabilized zirconia (NiO/BYSZ), berpori, tebal 400-600 µm</td>
</tr>
<tr>
<td>b. Katoda</td>
<td>terbuat dari Lanthanum Strontium Manganat (LSM), tebal 40-60 µm</td>
</tr>
<tr>
<td>c. Elektrolit</td>
<td>terbuat dari ytrria stabilized zirconia (YSZ), tebal 5-10 µm, densitas >97%</td>
</tr>
</tbody>
</table>

Tabel 2. Komponen Pendukung

<table>
<thead>
<tr>
<th>Bagian</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Cangkang</td>
<td>terbuat dari baja tahan karat tipe AISI 304, juga berfungsi untuk menyalurkan gas umpan juga berfungsi sebagai isolator</td>
</tr>
<tr>
<td>b. Asbes penyangga</td>
<td>tipe C-12 high alumina untuk mencegah kebocoran pada jalur gas bahan bakar dan oksidasi dalam sel.</td>
</tr>
</tbody>
</table>

Gambar 1. Kurva Polarisasi Sel Tunam
utama yang berupa SOFC tipe ASC1 buatan InDEC B.V.- Netherland dan komponen pendukung. Bagian-bagian dalam komponen utama dan pendukung dapat dilihat pada Tabel 1 dan Tabel 2.

Gambar 2. Rangkaian SOFC dalam Keadaan Terurai

Dalam operasinya, sel tunam dilengkapi dengan tabung-tabung gas, perpipaan, tungku pemanas, dan alat-alat ukur. Rangkaian peralatan tersebut ditunjukkan pada Gambar 3. Bahan bakar yang digunakan adalah hidrogen dengan konsentrasi propana 0% dan 22,2%.

Gambar 3. Rangkaian Alat Percobaan dengan Bahan Bakar Hidrogen-propana dan Oksidasi Udara
Penentuan kondisi operasi yang dapat memberikan unjuk kerja terbaik SOFC dilakukan melalui pengukuran tegangan yang dihasilkan sel pada beberapa variasi temperatur, laju alir dan konsentrasi gas propana sebagai pengotor dalam bahan bakar.

Umur operasi sel dinyatakan sebagai jangka waktu sejak sel menghasilkan tegangan hingga tidak lagi menghasilkan tegangan atau \(V=0 \). Umur operasi SOFC diperkirakan dengan analisis perubahan tegangan kerja sel yang dioperasikan pada kondisi optimum terhadap waktu.

Polarisasi sel tunam diamati dengan mengukur perubahan tegangan dan arus listrik yang dihasilkan sel, bila pada sel tersebut dipasang hambatan luar (R\(_c\)) yang besarnya divarisasikan. Pengamatan polarisasi sel ini dilakukan untuk mengetahui tahap pengendali laju reaksi yang terjadi dalam sistem sel tunam. Efisienis teagen sel diperoleh dengan membandingkan tekanan rata-rata yang dihasilkan oleh sel dan tekanan yang dapat dihasilkan oleh sel pada kondisi operasi.

4. Hasil dan Pembahasan

Untuk menentukan kondisi operasi yang optimal di sel tunam oksida padat, telah dilakukan pengukuran tegangan SOFC tipe ASC1 dengan tiga harga laju alir hidrogen umpan yaitu 35, 45, dan 55 mL/ menit, masing-masing divarisasikan pada tiga temperatur yaitu 700, 800, dan 900°C. Hasil pengukuran tegangan pada setiap kondisi operasi disajikan pada Gambar 5.

Gambar 5 memperlihatkan pada laju alir hidrogen 45 mL/ menit, SOFC dapat menghasilkan tekanan yang cukup tinggi (395 mV) pada temperatur 700°C, tetapi tekanan yang dihasilkan pada temperatur yang lebih tinggi (800 dan 900°C) menjadi sangat rendah. Fenomena ini sesuai dengan persamaan (9) yang menyatakan bahwa kenaikan temperatur akan menyebabkan penurunan tekanan sel bila perubahan entropi pada reaksi yang bersangkutan berharga negatif, seperti pada reaksi berikut

\[
2\text{H}_2(g) + \text{O}_2(g) \rightarrow 2\text{H}_2\text{O}(g) \tag{1}
\]

Dengan laju alir hidrogen yang sama tetapi pada temperatur lebih rendah (700 dan 800°C), tekanan sel yang dihasilkan kurang signifikan. Dari data tersebut tampak bahwa pada laju alir umpan bahan bakar yang sama, kenaikan temperatur menyebabkan kenaikan tekanan SOFC. Hal ini dimungkinkan oleh peningkatan difusi gas yang dapat menyebabkan peningkatan laju reaksi dan pengurangan polarisasi konsentrasi. Disamping itu, kenaikan temperatur juga meningkatkan konduktivitas elektrolit SOFC, sehingga polarisasi ohmic akan berkurang. Dengan adanya pengurangan polarisasi ohmic dan polarisasi konsentrasi maka tekanan yang dihasilkan sel akan naik.

\[
\begin{align*}
Q1 &= 35 \text{ mL/ menit} \\
Q2 &= 45 \text{ mL/ menit} \\
Q3 &= 55 \text{ mL/ menit}
\end{align*}
\]

Gambar 5. Hubungan antara Temperatur, °C dengan Potensial Sel (E), mV pada Berbagai Laju Alir \(\text{H}_2 \), mL/ menit dengan Rasio \(\text{H}_2 : \text{O}_2 = 1:5 \)

Dengan laju alir hidrogen yang lebih besar (55 mL/ menit), tekanan sel yang dihasilkan pada temperatur 700°C (41,88 mV) lebih rendah daripada tekanan dengan laju alir hidrogen 45 mL/ menit tetapi lebih tinggi daripada tekanan dengan laju alir hidrogen 35 mL/ menit. Kenaikan temperatur menjadi 800 dan 900°C dengan laju alir hidrogen yang sama (55 mL/ menit) cenderung menurunkan tekanan sel. Data pada Gambar 5 juga menunjukkan bahwa pada temperatur yang sama, laju alir hidrogen tidak menunjukkan pengaruh yang konsisten terhadap tekanan yang d i a s i l k a n s e l.

Kondisi optimum operasi SOFC ditetapkan pada temperatur 700°C, tekanan 1 atmosfer, laju alir hidrogen 45 mL/ menit dan laju alir udara 225 mL/ menit, dengan pertimbangan bahwa tekanan yang dihasilkan pada kondisi ini cukup tinggi, tetapi resiko korosi komponen pendukung SOFC tidak besar. Jadi, walaupun tekanan sel yang diperoleh pada temperatur 900°C, tekanan atmosferik, laju alir hidrogen 35 mL/ menit dan laju alir udara 175 mL/ menit, lebih tinggi lagi, tetapi karena pada kondisi tersebut stainless steel
rawan korosi temperatur tinggi, maka kondisi ini tidak dipilih untuk pengujian karakteristik SOFC lebih lanjut.

Pengukuran tegangan sel tunam terhadap waktu untuk memperkirakan umur sel tunam dengan bahan bakar hidrogen yang dilakukan pada kondisi operasi optimum serta sel dieoperasikan secara kontinyu selama 24 jam, disajikan pada Gambar 6.

![Gambar 6. Kurva Perkiraaan Umur Sel Tunam dengan Bahan Bakar](image)

Gambar 6. Kurva Perkiraaan Umur Sel Tunam dengan Bahan Bakar

Perkiraan umur sel dimulai dari menit ke-1156. Dengan menggunakan linearisasi, umur sel diperkirakan dapat mencapai 42 jam 36 menit. Percobaan penentuan umur sel untuk bahan bakar dengan konsentrasi propana 22,2 % dapat dilihat pada Gambar 7 berikut.

![Gambar 7. Kurva Perkiraaan Umur Sel Tunam dengan Konsentrasi Propana dalam Bahan Bakar 22,2 %-V](image)

Gambar 7. Kurva Perkiraaan Umur Sel Tunam dengan Konsentrasi Propana dalam Bahan Bakar 22,2 %-V

Percobaan dilakukan menggunakan campuran hidrogen-propana sebagai bahan bakar dengan konsentrasi propana 22,2 %-v. Berdasarkan Gambar 7, penurunan tegangan sel diperkirakan sebesar 0,0263 mV/menit. Dengan menggunakan asumsi bahwa sel dianggap mati saat tegangannya mencapai nol, maka umur SOFC tersebut diperkirakan dapat mencapai 422 jam.

![Gambar 8. Hubungan antara Eₕ dan log[I] Apabila Menggunakan Bahan Bakar Hidrogen](image)

Bentuk kedua kurva menggambarkan daerah polarisasi konsentrasi dengan harga arus mendekati maksimum dan tidak berubah dengan perubahan potensial, atau arus limit. Daerah polarisasi konsentrasi menunjukkan bahwa laju
reaksi elektrokimia dalam sel telah mencapai harga maksimum dan terkendali oleh perpindahan massa.

Hasil pengukuran tegangan terhadap waktu dengan variasi konsentrasi propana dalam bahan bakar hidrogen disajikan pada Gambar 10. Pada Gambar 10 terlihat bahwa potensial sel tertinggi jika menggunakan konsentrasi propana 33,3 % v dan 22,2 % v, secara berurutan adalah 231 mV dan 903 mV.

Gambar 10. Kurva Tegangan terhadap Waktu Operasi Sel Tunam dengan Menggunakan Bahan Bakar Campuran Hidrogen-propana

Hasil tersebut menunjukkan bahwa penambahan gas propana dalam hidrogen umpan SOFC dapat menurunkan tegangan yang dihasilkan sel. Pada konsentrasi propana 22,2 % v, pengaruh tersebut tidak signifikan. Namun pada konsentrasi propana 33,3 % v, tegangan sel yang dihasilkan menjadi lebih rendah.

Gas propana bereaksi lebih lambat daripada gas hidrogen di permukaan anoda. Di sampling itu, dengan adanya gas propana maka dapat terjadi reaksi reformasi yang memanfaatkan logam Ni pada anoda sebagai katalis. Karena kedua hal tersebut, tegangan sel yang dihasilkan menurun.

Tegangan nyata yang dihasilkan sel ditentukan berdasarkan tegangan rata-rata yang dihasilkan sel setelah sel mencapai keadaan stabil. Efisiensi tegangan sel tunam dengan bahan bakar hidrogen dan penambahan propana dalam bahan bakar dengan konsentrasi 22,2 % v secara berurutan adalah 38,4 % dan 83,4 %. Hal ini sesuai dengan persamaan Ohm: V=IR, yang menyatakan bahwa apabila besarnya hambatan sel yang digunakan adalah sama, maka semakin kecil arus limit, potensial sel yang dihasilkan semakin besar. Sehingga efisiensi tegangan yang diperoleh juga semakin besar. Hasil tersebut menunjukkan bahwa sel tunam bekerja dengan baik pada kondisi operasi 700 °C dan konsentrasi gas propana dalam bahan bakar 22,2 % v. Efisiensi yang diperoleh dari percobaan ini belum memperhitungkan energi yang digunakan tungku pemanas.

5. Kesimpulan

Dari hasil penelitian dapat diperoleh kesimpulan bahwa pengukuran tegangan menggunakan SOFC tipe ASCI dengan resiko korosi yang rendah diperoleh pada kondisi operasi temperatur 700 °C dengan laju alir H2 umpan 45 mL/menit dan laju alir udara 225 mL/menit. Penambahan propana dalam gas umpan dengan konsentrasi sebesar 22,2 % v tidak mempengaruhi tegangan sel.

Pengukuran umur sel dengan campuran bahan bakar hidrogen - propana 22,2 % v lebih panjang daripada umur sel dengan bahan bakar hidrogen saja. Begitu juga efisiensi tegangan SOFC yang diuji dengan konsentrasi propana 22,2 % v dalam bahan bakar lebih besar daripada menggunakan bahan bakar hidrogen saja.

Besarnya arus maksimum yang dihasilkan apabila menggunakan campuran hidrogen-propana lebih kecil daripada hanya menggunakan hidrogen saja. Kurva polarisasi hanya menunjukkan daerah polarisasi konsentrasi yang mengambarkan bahwa laju reaksi terkendali oleh perpindahan massa.

Ucapan Terima Kasih

Penyusun mengucapkan terima kasih kepada Fakultas Teknologi Industri ITB yang telah memberikan bantuan sebagian pendanaan untuk penelitian ini.