Pengaruh medan magnet pada presipitasi CaCO3 untuk pencegahan pembentukan kerak

Nelson Laksono, Setijo Bismo, Elsa Kristanti, Roekmijati Widaningrum

Abstract


Hard water magnetizing is applied as physical water treatment for reducing the formation of scale (CaCO3) in piping equipment and boiler Na2 CO3 and CaCl2 solution had been used as sample of hard water in many researches to investigate the influence of magnetic fields on CaCO3 formation. Na2 CO3 solution had been magnetized first before it was mixed with CaCl2 solution. By changing the strength of magnetic fields, exposed time, precipitated time, and temperature of sample, this study presents quantitative results of total scale deposit, total precipitated CaC03 and morphology of the deposits. This research was run by comparing magnetically and non-magnetically-treated samples. The results showed a decrease of deposits formation rate and total amount of precipitated CaCO3 of magnetically-treated samples. An increase in precipitation temperature increased the total amount of precipitated CaCO3 and the maximum precipitation was achieved at the 50°C. Microscope images showed that a smaller amount but larger size of CaCO3 particles formed in magnetically-treated samples. X-ray diffraction (XRD) analysis showed that samples contain mostly calcite. This research's result showed that magnetization of Na2 CO3 solution could reduce formation rate of CaCO3 either in solution or in the surface of hard water.

Keywords: Magnetic Treatment, Hard Water; Calcium Carbonate Precipitation; CaCO3 Deposit Morphology

 

Abstrak

Magnetisasi air sadah merupakan proses fisik yang bertujuan menekan terbentuknya kerak (CaCO3) pada sistem perpipaan dan boiler. Campuran larutan Na2 CO3 dan CaCl2 banyak digunakan sebagai model air sadah sintetik guna mengamati pengaruh medan magnet terhadap pembentukan CaCO3 dalam air sadah. Larutan Na2 CO3 dimagnetisasi terlebih dahulu sebelum dicampur dengan larutan CaCl2 Variabel proses meliputi waktu magnetisasi, waktu presipitasi, kuat medan, dan suhu larutan sampel sementara parameter yang akan diamati adalah jumlah deposit CaCO3 jumlah presipitasi total CaCO3 dan morfologi deposit CaCO3. Perbandingan parameter pengamatan dilakukan terhadap sampel yang dimagnetisasi dan sampel non-magnetisasi. Hasil percobaan menunjukkan adanya penurunan pembentukan deposit dan presipitasi total CaCO3 pada sampel yang dimagnetisasi dibanding sampel non-magnetisasi.   Peningkatan suhu presipitasi CaCO3 meningkatkan jumlah presipitasi total CaCO3 dan harga maksimum deposit CaCO3 yang terbentuk dicapai pada suhu 50°C. Hasil foto mikroskop menunjukkan jumlah partikel CaCO3 yang terbentuk pada sampel yang dimagnetisasi lebih sedikit dan ukuran partikelnya lebih besar dibanding sampel non-magnetisasi. Hasil uji XRD menunjukkan hanya kristal kalsit yang dominan pada kedua jenis sampel. Hasil penelitian ini menunjukkan bahwa magnetisasi larutan Na2 CO3 dapat menahan laju pembentukan CaCO3 dilarutan maupun dipermukaan pada air sadah.

Kata Kunci: Perlakuan Magnetik, Air Sadah, Presipitasi Kalsium Karbonat, Morfologi Deposit CaCO3


Full Text:

PDF

References


Abdel-Aal, N., Satoh, K., Sawada, K., (2002), Study of The Adhesion Mechanism of CaCO3 using A Combined Bulk Chemistry/QCM Technique, Journal of Crystal Growth 245 hal 87-100

Ben Amor, M., Zgolli, D., Tlili, M. M., Manzola, A.S., (2004), Influence of Water Hardness, Substrate Nature, and Temperature on Heterogeneous Calcium

Carbonate Nucleation, Desalination 166 hal 79-84

Barret, R.A., Parsons S.A., (1998), The Influence of Magnetic Fields on Calcium Carbonate Precipitation, Water Res. 32 hal 609

Gabrielli, C.; Maurin, G.;Poindessous, G.; Rosset, R., Nucleation and growth of calcium carbonate by an electrochemical scaling process, Journal of Crystal Growth 200 (1999) p;236-250

Hoysz, L., Chibowski, E., Szcze, A, (2003), Influence of Impurity Ions and Magnetic Field on The Properties of Freshly Precipitated Calcium Carbonate, Water Research 37 hal3351-3360

Higashitani, K., Kage, A., Katamura, S., lmai, K., Hatade, S., (1993), Effects of Magnetic Field on The Formation CaC0 Particles, J. Colloid Interface Sci. Hal 156, hal 90-95

Higashitani, K.;Oshitani, J., (1998), Magnetic Effects on Thickness ojAdsorbed Layer in Aqueous Solutions Evaluated Directly by Atomic Force Microscope, Journal of Colloid and Interface Science 204,hal363-368

Kozic, V. Lipus, L. C., (2003), Magnetic Water Treatment for A Less Tenacious Scale, J. Chem. Inf. Comput. Sci. 43, hal 1815-1819

Kney, A.D., Parsons, S.A., (2006), Spectrophotometer-based Study of Magnetic Water Treatment: Assessment of Ionic vs Surface Mechanisms, Water Research 40 hal.517-524.

Knez, S., Pohar, C, (2005), The Magnetic Field influence on The Polymorph Composition of CaCO3 Precipitated from Carbonized Aqueous Solutions. Journal of Colloid and Interface Science 281 hal 377-388

Kobe, S., Draz'ic', G, A.C. Cefalas, E. Sarantopoulou, (2002), Nucleation and Crystallization of CaCO3 in Applied Magnetic Fields, Crystal Engineering 5 hal 243-253

Wang, Y., Babchin, A.J., Cherny, L.T., Chow, R.S., Sawatzky, R.P., (1997), Rapid Onset of Calcium Carbonate Crystalization Under The Influence of Amagnetic Field, Water Res. 31 hal. 346




DOI: http://dx.doi.org/10.5614/jtki.2006.5.2.1

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Jurnal Teknik Kimia Indonesia

Jurnal Teknik Kimia Indonesia (JTKI) published by Asosiasi Pendidikan Tinggi Teknik Kimia Indonesia (APTEKIM)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.